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Abstract—Compared with traditional Nyquist sampling, com-
pressed sensing (CS) enables a highly precise reconstruction of 
the signal from fewer measurements, suggesting great potential 
for efficient and simplistic data acquisition. In this paper, we 
propose a directional block-based compressed sensing (DBCS) 
scheme for image coding, where the directionalities inherently 
exhibited within image blocks are exploited as the “a priori” 
information. The image block is first directionally scanned 
following the dominating direction of its edges/textures. Then 
the vectorized image block is sampled by a block-based 
compressed sensing (BCS) method. At the decoder, each image 
block is recovered and then rearranged by the corresponding 
inverse-scan to obtain the recovered image. Experimental results 
show that the proposed DBCS scheme outperforms BCS due to 
the exploitation of the directional information within image 
blocks. 

I. INTRODUCTION 
Nearly all the current signal acquisition systems such as 

digital cameras employ the sample-then-compress framework, 
where the raw data (suppose with length N) are first obtained 
by the Nyquist sampling and then compressed by encoding the 
values and locations of the K (K≪N) largest coefficients in 
terms of a certain transform basis. However, this framework 
suffers from three inherent inefficiencies [1]. First, the length 
of the raw data (N samples) is much larger than that of its 
dense representation (K coefficients). Second, after computa-
tion of N transform coefficients, (N – K) of them need to be 
discarded, which makes a vast quantity of computation waste. 
Third, an overhead is introduced by encoding the locations of 
the largest coefficients.  

To address these inefficiencies, compressed sensing (CS) 
[1-4] provides a new signal processing paradigm which 
attracts a widespread interest in the signal processing commu-
nity. It allows simultaneously signal sampling and compress-
ing at a sub-Nyquist rate via a linear random projection under 
certain conditions, and offers a highly precise reconstruction 
of the original signal. According to CS principles, fewer 

sampling data are needed and the digital data acquisition is 
much simpler, suggesting great efficiency and simplicity in 
signal processing. 

When applied to 2-dimensional (2-D) image, however, 
several challenges make CS very impractical [5, 6], e.g., it is 
not suitable for the real-time application as the entire scene 
needs to be sensed at once, the random projection operator 
requires a huge memory and the recovery process is very 
complex. To address these challenges, several fast algorithms 
[7-9] have been proposed to speed up the CS recovery process. 
A block-based compressed sensing (BCS) scheme coupled 
with a smoothed projection-driven Landweber (SPL) recovery   
is also proposed [5], which is more convenient for real-time 
applications because of the efficient measurement operation 
and fast reconstruction. In [6], some directional transforms are 
applied to the BCS-SPL iterations with a smoothing and a 
thresholding operation so as to encourage the smoothness and 
sparseness, thus resulting in a further improved performance. 

Meanwhile, several attempts to better preserve the direc-
tional information within image blocks are triggered by the 
fact that many image blocks contain different oriented edges 
and/or textures [10]. The directionality may be a big thing for 
the future image/video coding standards with the development 
of new directional transforms (such as that in [11]). To get 
better coding performance, the directional information within 
images needs to be taken more into account. Therefore in this 
paper, a directional block-based compressed sensing (DBCS) 
scheme is proposed to incorporate the directionality into CS 
paradigm. The directionality within an image block is 
exploited by a selected directional scan mode, which arranges 
the block into a vectorized version along the dominating 
direction of its edges/textures. Then the vectorized block is 
sampled by the BCS method. At the decoder, the image is 
reconstructed from the measurements with the inverse-scan 
mode. Two CS reconstruction algorithms, BCS-SPL [6] and a 
minimum total variation (min-TV) [2, 12] optimization algori-
thm, are utilized here with some necessary modifications. The 
proposed DBCS scheme maintains the merits of BCS and 
leads to a superiority over BCS. This work was supported in part by NSFC (No. 61073142, 61272262, 

61210006), ICP-SX (2011081055), SXNSF (2012011014-3).  

978-1-4673-5762-3/13/$31.00 ©2013 IEEE 1644



II. RELATED WORKS 
A. Compressed Sensing 

Suppose a given real value discrete signal x ∈  RN with 
length N can be represented in terms of a basis matrix Ψ ∈ 
RN×N, i.e., x = Ψθ, where θ ∈ RN are the coefficients of x in the 
Ψ domain. The signal x is K-sparse if θ can be well approxi-
mated by only K ≪ N largest entries. According to the CS 
principles, the K-sparse signal x can be accurately recons-
tructed from M ≥ Klog(N/K) measurements obtained through 
a linear and non-adaptive projection [2-4]: 

𝑦 = Φ𝑥 = Φ(Ψ𝜃) ,                             (1) 

where y ∈ RM denotes the measurement vector, and Φ ∈ RM×N 
is a measurement matrix which is incoherent with Ψ. The 
reconstruction can be formulated as an l1 optimization 
problem by solving: 

min 1
2
‖ΦΨ𝜃 − 𝑦‖22 + 𝜏‖𝜃‖1 ,                    (2) 

where the l1-norm term promotes the sparsity of the solution in 
Ψ domain and the l2-norm term guarantees the fidelity 
between the solution and the measurements. 

For 2-D image sensing, a BCS scheme is proposed in [5, 
6], where an image is first divided into B×B blocks and each 
block is sampled using a much smaller measurement matrix. 
Assume that each image block xi is taken by MB measurements: 

𝑦𝑖 = Φ𝐵𝑥𝑖,                                       (3) 

where Φ𝐵 is an MB×B2 orthonormal i.i.d Gaussian matrix with 
𝑀𝐵 = �𝑀

𝑁
∙ 𝐵2� (M/N denotes the measurement rate (MR)), and 

xi is the vectorized-version of the i-th image block through 
raster scan. The equivalent measurement matrix for the entire 
image in (1) is then a block-diagonal one: 

Φ = �

Φ𝐵
Φ𝐵

⋱
Φ𝐵

�.                               (4) 

In [6], the BCS reconstruction is deployed in some 
transform domain (e.g., contourlet transform, dual-tree DWT, 
DWT and DCT) with the SPL iterations involving a Wiener 
filter to eliminate blocking artifacts and a thresholding to 
enforce the sparsity of the solution. 

An alternative algorithm to reconstruct an image is to 
minimize the total variation (min-TV) with quadratic 
constraints, which finds the solution to the optimization 
problem [2, 12]: 

min ‖𝑥‖𝑇𝑉   s.t.   ‖Φ𝑥 − 𝑦‖2 ≤ ϵ ,                (5) 

where ‖𝑥‖𝑇𝑉 = ∑ �(𝑥𝑖+1,𝑗 − 𝑥𝑖,𝑗)2 + (𝑥𝑖,𝑗+1 − 𝑥𝑖,𝑗)2𝑖,𝑗  is the 
total variation of x, i.e., the sum of the magnitudes of the 
discrete gradient at every point, and ϵ  is a parameter 
associated with the noise level. Compared to (2), the min-TV 
based reconstruction usually provides a better performance but 
suffers huge computations. 

B. The Exploitation of Directionality in Image/Video Coding 
According to the fact that directional edges/textures are 
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Fig. 1. The block diagram of the proposed scheme. 

ubiquitous within many image blocks, the most recent video 
coding standard H.264/MPEG4-Part 10 [13] has developed 8 
directional prediction modes in the intra prediction coding for 
4 × 4 blocks; and the next generation video coding standard – 
high efficiency video coding (HEVC) [14], which is still under 
formulation, provides up to 33 directional prediction modes 
for each prediction unit (PU) (the total number of available 
prediction modes depends on the size of the corresponding 
PU). In [11], a directional discrete cosine transform (DDCT) 
framework is proposed following the directional modes 
adopted in H.264/AVC, in which the first transform of the 
conventional 2-D DCT is modified following the dominating 
direction of an image block. Then the produced coefficients 
are arranged appropriately to facilitate the second transform 
which is a horizontal one. By exploiting the directionality 
within each image block, the DDCT framework achieves 
remarkable improvement with respect to the rate-distortion 
performance.  

III. THE PROPOSED DBCS SCHEME 
In the BCS scheme [5, 6], the raster scanning for each 

image block proceeds only along the vertical direction, which 
however ignores the diversity of directions in image blocks. In 
this paper, we try to use some directional modes to conduct 
directional scanning for an image block along its dominating 
direction. We believe that the directionally-scanned vectorized 
block may have a more sparse representation under certain 
transform basis (such as DCT), which will achieve better CS 
reconstruction. 

The scheme of the DBCS-based image coding is shown in 
Fig. 1. The whole image is first split into some nonoverlapped 
blocks and each block is scanned according to a selected 
directional scan mode, and then, a random measurement 
(sampling) operation like that in BCS method is applied on the 
vectorized image block. At the decoder, the original image is 
recovered by using the BCS recovery and an inverse-scan 
operation, which will be described later. 

A. Directional Scan Mode for Image Blocks 
The directional scan modes for 8 × 8 blocks are depicted in 

Fig. 2 (Mode 0 and Mode 1, the vertical and horizontal modes 
are not included here, and Mode 2, the planar mode, is not 
considered in this paper). These directional modes are defined 
as those in the (intra) directional predictions in H.264/AVC 
[13], and Mode 3 to Mode 8 are named as diagonal down-left, 
diagonal down-right, vertical-right, horizontal-down, vertical-
left and horizontal-up, respectively. As can be seen, the initial 
points for Modes 4 to Mode 8 are shifted to avoid skips when 
the block is scanned. For the 16 × 16 and 32 × 32 blocks, 16 
and 32 directional scan modes are used following the intra  
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Fig. 2. Directional scan modes for 8×8 blocks. 

prediction directions adopted in the HEVC [14], respectively. 

After the directional scan modes are determined, the best 
directional mode which follows the dominating direction of an 
image block is firstly selected, and then the block is arranged 
into a column-vector by the directional scan. At last, the 
directionally-scanned and vectorized image block is sampled 
as that in (3). 

It is important to notice that, in a practical image CS scen-
ario, the a priori information about the directionality seems to 
be not available because we cannot get any information about 
an image before it has been sensed. However, if in a video 
scenario, it is possible to draw an estimate of a frame before 
sensing it and then the approximate information is available a 
priori. Here, we ignore this issue and just focus on demons-
trating the effectiveness of utilizing directionality in CS image 
applications. 

B. Scan Mode Selection for Each Block 
It is not our concern about how to identify the dominating 

direction of an image block, so we adopt an exhaustive 
method to test every mode for a block and select the one with 
highest recovery quality. To this end, all eight modes are used 
to scan each block, respectively, resulting in eight vectorized 
versions, then each version is sampled as in (3) with the same 
sampling operator and recovered using a CS recovery 
algorithm. The one with highest recovery quality is selected as 
the best mode for that block.  

Obviously, it is very expensive computationally because of 
the exhaustive selection of the best mode. Moreover, it needs 
some extra bits to denote the best mode for each block, i.e., 8 
× 8 blocks need 3 bits to denote 8 modes, 16 × 16 blocks need 
4 bits to denote 16 modes and 32 × 32 blocks need 5 bits to 
denote 32 modes, respectively. However, the extra bits take a 
quite tiny portion of the MR, i.e., 3/(8×8)/8 = 5.9×10-3, 4/(16× 
16)/8 = 2.0×10-3 and 5/(32×32)/8 = 6.1×10-4, respectively. 

C. The Reconstruction of DBCS 
As mentioned previously, two CS recovery algorithms, 

BCS-SPL [6] and min-TV optimization [2, 12], are adopted in 
the proposed scheme. Since the measurements are taken from 
directionally scanned blocks, some necessary modifications 
have to be done in the recovery algorithms. As to BCS-SPL, a 
Wiener filter smoothes the outputs of each SPL iteration in the 
pixel domain, so the inverse scan must be conducted on the 
current iteration outputs before the smoothing in order to align 
the outputs with the original-order image; then, after the Wie-
ner filtering, the corresponding directional scan should be app-
lied on the filtered values in order to align with the measure- 

 
Fig. 3. The subjective comparison between BCS and DBCS for Spoke (MR = 
0.5, only an enlarged portion is shown here). Left: BCS-TV; Right: DBCS-
TV. 
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Fig. 4. The distribution of directional modes for Spoke with DBCS-TV. Left: 

original; Right: the directional modes selected in DBCS-TV. 

ments. On the other hand, for the min-TV based recovery, the 
smoothness is implicit in the gradient domain which also 
ensures the sparseness of the solutions; this will naturally 
benefit greatly from the directionally scanned blocks whose 
elements are best aligned with each other. In the end, the 
restored image is obtained by applying the inverse scan on the 
final solution. 

IV. EXPERIMENTAL RESULTS 
To validate the performance of the proposed scheme, we 

compare it with BCS-SPL [6] in the DCT domain; and also 
with BCS-TV, where BCS sampling is coupled with the min-
TV recovery. We refer to the implementations of the proposed 
scheme as DBCS-SPL and DBCS-TV, respectively. Two 256 
× 256 images (Lena and Barbara) and two 512 × 512 images 
(Straw and Spoke) are tested in the experiments.  

Table I tabulates the performance (PSNR versus MR) 
comparisons between BCS and DBCS schemes (the overhead 
of DBCS is not included here). As can be seen, only a very 
marginal improvement is achieved by using the SPL recons-
truction while the TV reconstruction gets a quite remarkable 
gain. For blocks with size 16 × 16 and 32 × 32, the perfor-
mance increments are not obvious compared with that of 
blocks with size 8 × 8. This may because that the selected 
directional scan modes cannot match the real edges/textures of 
image blocks with large size. When the block size is 8 × 8, Fig. 
3 gives a visual comparison which shows that the proposed 
scheme achieves significantly better quality than BCS at the 
regions contain directional edges (see the areas marked by the 
red ellipse circles); and Fig. 4 shows the directional scan 
modes distributed over Spoke. It can be seen in Fig. 4 that 
selected modes quite match the regions that contain directional 
edges, especially at the diagonal directions.  
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V. CONCLUSIONS 
This paper proposes a directional block-based compressed 

sensing (DBCS) scheme which exploits the directionality 
within image blocks as the a priori information. Some 
directional scan modes are incorporated to directionally scan 
the image blocks along their dominating directional edges/ 
textures. The scanned blocks are then sampled using a BCS 
method. The image is reconstructed by the measurements 
from directionally-scanned blocks and the corresponding 
mode information. Experimental results show that, compared 
with BCS, the proposed scheme achieves remarkable 
improvement in both PSNR and visual quality, especially in 
the case of small block size. However, there are still some 
issues to be considered in the future, e.g., the analysis of the 
sparsity of the directionally-scanned blocks under some 
transform basis and the precise definition of directional scan 
modes to follow the edges/textures within image blocks with a 
big size. 
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TABLE I.  PSNR comparative results of DBCS and BCS (in dB) 

MR 0.1 0.2 0.3 0.4 0.5 
Block Size (8×8) 

Lena 
(256×256) 

BCS-SPL 23.06 24.09 27.78 29.93 31.23 
DBCS-SPL 23.37 25.60 28.39 30.21 31.61 

BCS-TV 21.90 25.03 27.26 29.03 30.77 
DBCS-TV 23.70 26.32 28.36 30.15 31.97 

Barbara 
(256×256) 

BCS-SPL 19.77 21.11 22.11 23.16 24.18 
DBCS-SPL 19.91 21.55 22.43 23.54 24.58 

BCS-TV 18.71 20.12 21.09 21.87 22.66 
DBCS-TV 20.17 21.33 22.23 23.15 24.11 

Straw 
(512×512) 

BCS-SPL 12.52 14.02 15.25 16.36 17.52 
DBCS-SPL 13.08 15.21 16.31 17.82 19.11 

BCS-TV 10.74 13.87 15.57 16.90 18.27 
DBCS-TV 12.72 14.78 16.36 17.91 19.38 

Spoke 
(512×512) 

BCS-SPL 16.26 19.85 22.33 24.48 26.25 
DBCS-SPL 16.30 20.33 22.46 24.52 26.42 

BCS-TV 16.20 19.30 21.68 24.58 26.42 
DBCS-TV 17.85 21.55 23.44 26.04 28.20 

Block Size (16×16) 

Lena 
(256×256) 

BCS-SPL 23.08 26.23 28.33 29.83 31.46 
DBCS-SPL 23.22 26.25 28.47 30.07 31.65 

BCS-TV 23.35 26.38 28.49 30.26 31.99 
DBCS-TV 24.09 26.97 28.93 30.70 32.38 

Barbara 
(256×256) 

BCS-SPL 19.36 21.01 22.22 23.32 24.49 
DBCS-SPL 19.49 21.19 22.35 23.48 24.76 

BCS-TV 19.32 20.62 21.50 22.25 22.97 
DBCS-TV 19.97 21.16 22.10 22.90 23.91 

Straw 
(512×512) 

BCS-SPL 12.16 13.71 15.04 16.31 17.71 
DBCS-SPL 12.68 14.56 16.16 17.54 19.08 

BCS-TV 12.26 14.16 15.75 17.19 18.80 
DBCS-TV 12.75 14.51 16.15 17.55 19.19 

Spoke 
(512×512) 

BCS-SPL 16.72 20.43 23.37 25.55 27.62 
DBCS-SPL 16.11 20.49 23.62 25.95 28.09 

BCS-TV 16.99 21.50 24.71 27.08 29.45 
DBCS-TV 18.01 22.49 25.63 27.89 30.38 

Block Size (32×32) 

Lena 
(256×256) 

BCS-SPL 23.49 26.26 28.11 29.73 31.28 
DBCS-SPL 23.92 26.42 28.40 30.12 31.71 

BCS-TV 24.61 27.42 29.34 31.18 32.81 
DBCS-TV 24.90 27.61 29.48 31.32 33.14 

Barbara 
(256×256) 

BCS-SPL 19.67 21.06 22.35 23.49 24.66 
DBCS-SPL 19.96 21.13 22.40 23.69 24.92 

BCS-TV 19.87 20.88 21.70 22.45 23.30 
DBCS-TV 19.99 21.14 21.91 22.74 23.70 

Straw 
(512×512) 

BCS-SPL 12.48 13.89 15.29 16.65 18.02 
DBCS-SPL 13.06 14.68 16.27 17.75 19.22 

BCS-TV 12.73 14.46 15.99 17.49 19.03 
DBCS-TV 12.90 14.63 16.18 17.68 19.26 

Spoke 
(512×512) 

BCS-SPL 17.10 20.77 23.31 25.54 27.41 
DBCS-SPL 17.90 21.16 23.95 26.33 27.53 

BCS-TV 19.24 23.79 26.67 28.98 31.48 
DBCS-TV 19.81 24.17 27.02 29.32 31.75 
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